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Abstract 

Convolutional neural networks model human brain activity from sensory inputs and have been 

applied to various activities such as driving cars, recognizing speech, and playing complex 

games. These machine learning algorithms gained popularity in recent years as an effective 

method for pattern recognition. This paper proposes a novel convolutional neural network 

architecture to detect lung cancer in radiographic images. Given that patients routinely have x-

rays taken for pre-emptive health screenings, and the growing amount of medical data from these 

imaging procedures, the need for automated detections of abnormalities increases. The solution 

used a dataset of labeled x-ray images of patients with confirmed instances of lung cancer 

combined with an equal set of cancer-free patients. The network relied on rectified linear unit 

activations and dropout to reduce overfitting. Then, this neural network model was trained with a 

standard backpropagation algorithm with an Adam optimizer using softmax regression. This 

model demonstrated a 91% accuracy rate on lung cancer chest x-rays. 
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Introduction 

 The rate of lung cancers among the population has dramatically increased during the 20th 

century, posing a large threat to the public especially those with higher risks of the disease, such 

as former or current smokers and those with exposure to radiation or chemicals in the workplace. 

It is estimated that over 1,465,000 people die every year from cancers, 18.2% of which are a 

variant of lung cancer [1]. The tumors resulting from this disease at a certain stage are visible to 

experienced radiologists on such mediums as chest x-rays, CT scans, and PET scans, imagery 

often taken during diagnosis of these diseases or as a preventative measure in several cases. 

Currently, the low survival rate for lung cancer of around 10% is attributed to its frequent late 

detection.  

 Computer vision technology has recently been applied to problems of increasing 

complexity. Algorithms must find features in more complicated and often nuanced patterns such 

as those present in medical imagery with a usable degree of accuracy. A specifically tuned 

feature detector, such as SIFT [2], will not work on different varieties of inputs because it does 

not have the capacity to adapt as it will not update in response to new parameters. In the modern 

medical industry, imagery such as x-rays and CT scans are commonly used with computer vision 

solutions to warn an operator or radiologist about the likelihood of patients having certain 

conditions, a process known as Computer-Aided Detection [3]. However, these solutions based 

upon classical algorithms are often limited to certain conditions and data types. For example, a 

feature detector designed to identify breast cancer will not likely prove useful for tracking lung 

cancer unless modified. Convolutional neural networks are a promising solution to the problem 

of medical image analysis due to their ability to generalize based on their dataset. A recent 

evaluation of a non-medical dataset against expert human annotators proved that networks 
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trained on computers are useful as the human team performed with a top-5 loss of 5.1% [4]. 

Many network architectures have been developed for classifying images, such as AlexNet [5] 

and Google’s Inception [6], the former of which won the ImageNet Large Scale Visual 

Recognition Challenge in 2012 and the latter won the same challenge in 2014 with a loss of 

6.67%, narrowly approaching human error for the same database. It is not currently known how 

these architectures perform on binary classification. In this paper, a new neural network 

architecture for classifying medical imagery is presented and tested on a public, anonymized 

medical dataset. 

Background 

 Classical computer vision, in contrast to machine learning technologies, covers the 

methods used to process imagery using specialized detection algorithms. A popular software 

programming library known as OpenCV contains the implementations of a multitude of highly 

optimized algorithms that are applied for research and commercial use to every platform: 

desktop, server, mobile, and embedded. These functions include image filters like blurring with 

Gaussian, edge detectors like Laplacian and Canny, the latter based on signal optimization, and 

segmentation methods such as finding contours and extracting their attributes such as area via 

Green’s theorem and positioning through contour moments. Besides a handful of specific 

procedures, such as background subtraction, classical computer vision relies on the localization 

of certain handcrafted features in the image, rather than the automated response of constructing 

and tuning features based on positive stimulus. 

 One of the simplest and most popular methods of classifying data with learned features is 

known as logistic regression. Logistic regression [Equation 1] is used when the problem requires 

discrete output values, such as benign or malignant for a tumor, in opposition to linear 
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regression, a similar machine learning technique that can be used to predict values from a range. 

A sigmoid function is used to ensure that the output will map to one of two possibilities. This 

algorithm has a cost function which takes the current parameters as an input and outputs a cost 

value, or a number related to the function’s distance from convergence. A cost function is also 

commonly known as a loss function. 

Equation 1. Logistic Regression Cost Function 

𝐽 𝜃 = −
1
𝑚 𝑦( log ℎ- 𝑥( + 1 − 𝑦( log(1 − ℎ-(𝑥())

2

(34

 

Neural networks are another technique of machine learning which attempts to model the 

human brain to solve classification tasks. These techniques, originally developed in the twentieth 

century, have experienced a recent revival due to the improvement in computing power and now 

serve as the state of the art approach for solving a variety of problems from email spam 

classification to medical research. The simplest neural network consists of an input data layer, 

multiple hidden layers, and a fully-connected layer [Figure 2]. Each layer consists of several 

neurons which transform the data based on the specific weights and biases. The input reads the 

data and labels from a source and subtracts the mean image from the data to prevent close 

adhesion to the dataset. Hidden layers perform convolutions and pooling to extract features, and 

fully-connected layers combine the results of the last hidden layer into the correct interval for the 

output. The last fully-connected layer’s dimensions match the intended number of output 

classes—in the case of ImageNet, 1000, or in the case of binary classification, 2. 
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Figure 2. Neural network layers 

 

The backpropagation algorithm performs an update of the weights of the network by 

calculating the error of each layer of the network using the loss function. 

Equation 3. Backpropagation algorithm 

𝐷(6
(7) =

1
𝑚𝛥(6

(7) + 𝜆𝛩(6
(7) 

 Neural networks are trained using a technique known as gradient descent. This algorithm, 

used in combination with backpropagation, attempts to find the global minimum of the cost 

function over the space of the network. In Figure 4, gradient descent is optimizing a cost function 

J on weights θ. This procedure is usually performed iteratively in which one image is provided to 

the input data layer which the network then processes, then using the cost function to determine 

the gradient between this prediction and the ground truth value, and then finally performing 

backpropagation to update the weights of the previous layers. Today, many alternatives exist to 

the traditional gradient descent process, such as the Adam optimizer [7]. 
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Figure 4. Model of gradient descent process 

 

 Classification of data based on the current weights of the network uses an algorithm 

called forward propagation, which outputs a hypothesis. This algorithm calculates the activations 

for each layer in sequence by multiplying the previous value by the weight, subjecting this to the 

specified sigmoid activation function and summing this value with the bias. As the next layer’s 

activation directly depends on the previous layer’s activation value, connections are made 

between the neurons of each layer, creating the neural network. The backpropagation algorithm, 

shown above in Equation 3, uses forward propagation to compute a hypothesis value for each 

input data point which is used to find a delta value between the estimate and the actual value 

from the input label in supervised machine learning. 

Equation 5. Forward propagation algorithm 

𝑎 < = 𝑔(𝛩 <>4 𝑎 <>4 ) 

In most cases, designing a suitable feature detector involves an in-depth knowledge into 

the subject matter being analyzed, while neural networks can be implemented without this 

requirement. The first research into convolutional neural networks occurred when researchers 

from AT&T explored their use for recognizing numbers on documents, a solution which is still 
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used today by the United States Postal Service for reading ZIP codes from envelopes [8]. These 

models differ from earlier neural models in that they have local receptive fields, shared weights, 

and subsampling. Receptive fields act as the namesake layer of a convolutional network in small 

kernels of defined pattern, usually 2x2 or 3x3, usually applied sequentially or concurrently 

across an image, but can be applied at an interval using a parameter known as stride, which 

allows the model to find features across the entire input space by reducing neurons [9]. Shared 

weights significantly reduce the amount of optimization necessary for training, as it only must 

update one weight instead of a number dependent on the size of the image. By finding the 

parameters through subsampling, the model gains the ability to respond to variations in the input. 

Convolutional neural networks have demonstrated an ability to generalize to any input and learn 

analysis and classification from a plethora of training data.  

Related Work 

In a recent project performed at the University of Bern, a group of researchers created a 

deep convolutional neural network architecture for the classification of lung diseases based on 

lung slices from computed tomography images that performed with an accuracy of 85.5% on its 

dataset [10]. However, this method trained upon smaller patches inside of the lung image scan 

which required manual segmentation by radiologists. The ability of deep convolutional neural 

networks to learn intricate details from an image obviates the need for such a process, which can 

be replaced by classification of an entire image based on final diagnosis of the patient. This 

method allows for an increase in automation of the procedure which allows for faster results 

from screening without a loss in accuracy. 

In another project performed at the Federal University of Parana, a convolutional neural 

network was used for classifying images of cell slides of breast cancer patients [11]. That project 
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also used patch generation across the image to generate 1,000 patches per image using multiple 

techniques including random generation and sliding window. However, this approach is not 

applicable to x-ray scans of the chest because the lungs have a definitive geometric structure and 

orientation unlike that of cell culture screens, which can have abnormalities in any position. 

Datasets that are not reliant on geometric information often augment themselves through random 

rotation and cropping. To accommodate the variation in the PLCO dataset used in this project, 

rotations of ninety degrees were applied to create a uniform input. 

Materials 

 All design and training of this algorithm was performed on a desktop computer running 

the Ubuntu Linux 16.04 LTS operating system. The open source nature of this platform has 

attracted skilled developers and created an ecosystem of quality software that was used in the 

preparation of this project. This operating system has also executed computer vision software 

faster than any competing platform due to the techniques used to accelerate disk access, a critical 

component of training a network due to the large dataset size. Software used in this project was 

originally designed to operate in this specific environment and some tools recently became 

available elsewhere but without the performance optimizations available by targeting a specific 

architecture. 

 This computer was powered by an Intel i7-6800K processor at 3.6 GHz, 32 GB of RAM, 

and a solid state hard drive which allowed ruling out bottlenecks in these components. High 

levels of system memory and a fast storage medium were required for this application which 

depended on loading a significant number of medical images for training and validation. To store 

the original dataset, two 2 TB hard drives were used as a source for the resizer. The machine 

learning algorithms were accelerated by a NVIDIA Pascal Titan X with 12 GB of GDDR5 RAM, 
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which stored the graph and all the learned parameters of the networks. The large size of the 

images when expanded into memory necessitated the use of this coprocessor.  

 To create the network and train it with high efficiency, an optimized neural network 

framework named TensorFlow was used [12]. This open source software solution was originally 

created by the Google Brain team for machine learning on textual data. The framework supports 

running the training operation of the network on traditional computer microprocessors or 

graphics processing units (GPUs) which have been proven to accelerate training speed, as well as 

custom integrated circuit logic used internally by Google for their products. This program builds 

a computational graph using its programming language interface which then executes it on the 

intended device. It also seamlessly supports several machine learning algorithms with the same 

optimizer. Relying on a framework to perform the convolutions, pooling and other internal 

computations used by convolutional neural networks permitted more focus on the design of the 

network and comparison to others instead of the recreation of existing technology. This program 

also contains functions for distributed computing, which would further accelerate the process of 

training in an industrial environment. 

 Due to its populated library of scientific computing resources and toolkits, the Python 

programming language version 3.5 was used for all aspects of this project, from loading image 

data to generating the final diagrams. The TensorFlow framework provided a backend for this 

language, so that the graphs describing the network architecture and optimizer could all be 

defined in software. A buffering data batcher was also created to provide images to the training 

algorithm in a random order to allow additional training after a pass over the entire dataset, or 

epoch, had already been completed. This solution also relied on the NumPy library for efficient 
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storage and manipulation of large vectors and the SciPy library for transformations such as 

uniform image scaling. 

Procedure 

 The accuracy of convolutional neural networks is primarily dependent on the size, 

complexity, and noise of the dataset utilized. In this case, the PLCO dataset available from the 

National Institute of Health [13] was chosen due to the consistent x-ray data type and confirmed 

ground truth labels by radiologists, a relatively unique feature among medical databases. The 

data was provided as a 2.2 TB collection of TIF image files at a resolution of 2000x3000 stored 

as 16-bit single-channel images which were identified by markers in a spreadsheet. An example 

image from the dataset is found in Figure 6. To fit the specific parameters of the neural network, 

and to increase training efficiency, all the images were resized and uniformly scaled to 256x256 

floating point single-channel images using the OpenCV library.  

Figure 6. A chest x-ray 
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 Next, the loaded images were split into two classes, the first being x-rays linked to a 

positive lung cancer screening within 30 days and the second being x-rays not linked to lung 

cancer, based on ground truth values stored in a secondary input file parsed by a Python script. 

Data was removed from the more populous negative label to balance the data supporting each 

class, as imbalanced datasets have been known to exhibit suboptimal performance because of the 

presence of noise and outliers [14]. The data was further divided, with 75% of the images 

retained for training and 25% of the images set aside for testing the accuracy of the network 

through softmax regression after the training process. The program was designed to perform 

testing using 100 iterations of the validation dataset. 

 The custom network designed for this dataset (shown in Figure 7) was made much 

simpler than the AlexNet and Inception models as the binary classification required by this 

problem did not demand much depth, or many layers contributing to complexity. The network 

consisted of five convolutional layers with rectified linear unit activators, each followed by 2x2 

max pooling layers. 
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Figure 7. Final neural network graph 

 

 A common problem in the pursuit of deep learning technologies is the tendency for 

models to over fit the data, or develop a dependence on the validation dataset. With small 

datasets, the relationships discovered by the neural network will become the result of sampling 
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noise, which appears as the accuracy of the network over the validation set will reach a 

maximum before regressing. An algorithm, known as dropout, has been proven to reduce the 

effect of overfitting and improve the performance of neural networks in the fields of vision, 

document classification, and others [9]. This benefits generalization by eliminating neurons and 

their connections within hidden and input layers based upon a constant, predefined probability 

each iteration. However, all neurons and connections of the network are active during the 

validation stage. This project employs a dropout strategy with the probability set to 50%, a value 

said to perform generally well across implementations of all fields. This step was performed 

during the second fully-connected layer following the hidden layers of the network. In total, this 

model contained 37,911,298 trainable parameters. 

 To train the network, 10,000 iterations of the optimizer were executed. Each iteration 

consisted of loading 16 images through a consistent, randomized batch loader to ensure adequate 

memory for parameter storage and to prevent the optimizer from focusing on runs in the data. 

Every 10 iterations, the accuracy was calculated against the training dataset and recorded. For the 

remainder of the iterations, the program ran a training step which performed backpropagation of 

the network over the data, updating the weights and biases of the network allowing the model to 

learn. The dropout layer effectively reduced the chance of overfitting and diverging. The model 

was trained through 28 epochs of the dataset, or complete repetitions of all the images. 

Data 

 Testing of the network was performed on the model after successful training by backward 

propagation. A forward pass was performed on 100 data points selected from the dataset 

delineated for use in testing and the predicted output of the classification was recorded. These 

values were then compared to the ground truth values associated with each data point, and the 
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amount of predictions that were consistent with the actual values were divided by the total 

amount of data points tested to find the accuracy of the network. This accuracy was computed 

for every 10 iterations of the network during training to create a graph shown in Figure 8 of the 

change in accuracy versus steps. 

Figure 8. Change in accuracy versus iterations of training data 

 

 Figure 8 shows the progress of the neural network as it trains over 10,000 iterations of the 

dataset with a batch size of 16 images per iteration. As shown, the model rapidly accelerates in 

training performance within the first epoch to the baseline accuracy and increases in precision as 

the model continues to train. The amount of time it takes for a network to complete a full course 

of training traditionally takes on the order of hours or days. The relatively quick training of this 

model is attributed to its binary output, in contrast to a large network such as GoogLeNet which 

contains 1,000 outputs and necessarily takes more time per iteration. Figure 9 presents the total 

training time for this network and change in time per iteration. 
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Figure 9. Time difference between iterations 

 

Figure 9 demonstrates the intuition that each iteration executes in constant time intervals. Taking 

the derivative of the above gives a constant in terms of iterations per second, which shows that 

the algorithm could train at a rate of around 12 iterations per second, or 192 training samples per 

second, with full data logging enabled.  

Results 

 To generate the following visualization, four images from both classes were first selected. 

Then, the network was used to compute the confidence scores, a measurement taken directly 

from the neural network’s softmax layer that expresses the amount of guesswork versus educated 
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prediction that the network made when determining this prediction. Each positive and negative 

image is a rescaled x-ray from the validation dataset. 

Figure 10. Chart showing example validation set images from both classes and the output 

confidence scores 

 

 

The confidence scores demonstrate that the network’s knowledge of the parameters enabled it to 

make predictions that it perceived as accurate, rather than random choices. 

 For binary classifiers, such as this model, a matrix can be used to present several statistics 

about the performance of the algorithm. The core of this matrix is the contingency table, which is 

used to present the frequency of the real condition variable and the predicted condition variable. 

From this crosstabulation many ratios can be derived, most notably the descriptions of false 

positives and negatives as well as their respective rates among the population. To generate the 

following matrix, the network was computed against all 1,884 validation samples and the ground 
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truth label was recorded with the predicted output. The statistical ratios were calculated from 

these inputs. 

Table 1. Binary classifier evaluation contingency table and confusion matrix followed by key 
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The results of this test demonstrate the model’s accuracy as found earlier as well as its tendency 

to avoid false positives and negatives. 

Conclusion 

The final accuracy of the network over the validation set of 91% vastly surpassed the 

benchmark of 50% for random guessing on the two-class dataset which shows that the model has 

succeeded at learning patterns related to the presence of various types of confirmed lung cancer 

in these images. Note that a common machine learning pre-processing step, known as mean 
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value subtraction, was not used in this implementation. This would involve precomputation of 

the average value of the entire training dataset and a subtraction step before each training 

operation. For a particular dataset, this often improves training accuracy as the parameters are 

being optimized directly on the unique properties of each image, however this application 

achieved success without reliance on this process. A future inquiry could test whether mean 

value subtraction would impact the ability of a model to adapt to the variation of new input.  

Discussion 

Given that a human radiologist must spend a considerable amount of time on each image 

to make a correct prediction, screenings for many types of cancer do not often occur early, 

causing diagnoses to often arrive during the late stages of these diseases. As this model using 

TensorFlow could process images through a neural network at a speed of 3.41 milliseconds each, 

the potential to use such a model as a preliminary screening step may save many lives with early 

detection and from misdiagnoses. All cases of concern will necessarily have to be verified by an 

experienced radiologist, but the automation provided by this tool will decrease costs, increasing 

the accessibility of screenings, as well as increase the speed and accuracy of diagnoses. 

Future areas of improvement to this solution include supporting predictions based on CT 

scans of potentially affected regions of the body. As shown by the National Lung Screening Trial 

[15], this type of imagery may have a higher potential for identifying cancerous tumors due to 

the larger dataset based on 3D imagery. Further research will be necessary to find the best 

method of representing this slice-based data, whether by expressing the data in vector form as 

done for the 2D imagery in this project or with knowledge about the location of each slice in the 

patient. As the technology behind these scans continues to improve, as shown through the 
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introduction of high resolution yet low-dose capture techniques, the importance of automated CT 

screenings will increase. 
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