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Abstract

Low-cost, consumer-oriented depth sensors such as
the Microsoft Kinect provide an accessible way to
get quality metric depth data, contrasted with more
accurate but more expensive LIDAR or time-of-
flight based sensors. However, these devices by
themselves suffer from problems such as sparse in-
formation spaces and limited field of view. This
project addresses these problems by applying previ-
ous work in hole filling and image stitching to allow
for depth maps with wide field of view based on
multiple depth sensors in different orientations. Ex-
perimental results demonstrate that with some in-
corporated improvements, smooth depth maps can
be generated from multiple source images with min-
imal tuning.

1 Introduction
A normal color image can be augmented with
depth/distance information at every pixel, forming
what’s known as an RGB-D image where depth is
an additional channel. This additional spatial infor-
mation has been increasingly useful in applications
of computer vision, including fields such as biomet-
ric authentication, autonomous mobile robotics, and
self-driving cars.There exist many methods of com-
puting a depth map from a scene. Structured light
sensors, laser scanners, LIDAR systems, time-of-flight
sensors, and binocular stereo vision cameras produce
this data tailored to a variety of environments at a
variety of price points. This paper focuses on the Mi-
crosoft Kinect sensor, a speckle imaging device with
small field of view oriented at consumer use in close
range [5]. Despite its limitations, it remains an attrac-
tive device for amateur or small scale applications due
to its low cost on the order of $100 during production
and $10 on the resale market, especially due to the
wide variety of possible indoor applications.

While some limitations cannot be avoided such
as the restriction to indoor use, we know that we
can overcome limited fields of view in color cameras
by applying image stitching algorithms to create a
panoramic photo [1], thus it should be possible to

Figure 1: Registered Kinect metric depth map

improve the Kinect depth map by stitching multiple
views together as well. Solving this problem can thus
enable the use of cheaper sensors in more complicated
vision applications. In this project, I will implement
noise filtering and depth map stitching. I will test
my implementation using images taken on my Kinect
sensor, visually comparing the resulting panorama to
the real environment as well as to characteristics of
the results shown in [2].

2 Background & Related Work
The algorithm presented in this paper is an adap-
tation of the work in [2], which investigated depth
map preprocessing and alignment, color image regis-
tration, and compositing to solve this problem based
on pairs of Kinects. That paper in turn first built
upon the work in [4] who worked on noise reduction
of Kinect depth maps based on a guided anisotropic
diffusion method.

For the second step of stitching together the pro-
cessed images, they applied the work in [1], which
solved the stitching problem in color images by com-
puting features in both images using the SIFT algo-
rithm [3], performing a dual image keypoint matching
step using a nearest-neighbor algorithm, and finally
stitching all the images together using multi-band
blending based on source images in spherical coordi-
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nates. To compensate for the issue that SIFT was not
designed for depth maps and that the depth informa-
tion might have fewer features than the color space,
they used the registered color images to perform the
feature extraction and mapping and then used the re-
sulting homography to transform and blend the depth
information.

3 Proposed Approach
In this paper, I apply an adaptation of the algorithm
presented in [2] to preprocess and then stitch together
depth maps into one panorama. This paper will only
consider the task of stitching two images together, but
it could be easily extended to stitch n images in the
same way as the original paper, forming up to a full
360◦ panorama. This paper will also only consider
concentric cameras, which corresponds with diagram
e in Figure 2 in the original paper, which was shown
to produce results with the least interference in their
testing.

3.1 Single image registration
By default, the Kinect produces an RGB-D image
where the depth channel is not aligned with the color
image. This is due to the fact that the cameras re-
sponsible for each are offset from each other by a few
centimeters, creating a stereo effect. In [2], the regis-
tration problem was solved by calibrating the depth
camera and the color camera, using the resulting in-
formation to relate both by a homography and then
applying that to map the depth information into the
space of the color information. The approach in this
paper does not explicitly rely on a manual camera
calibration, as all the necessary parameters are cal-
culated at the factory and stored on the sensor. The
problem of depth map registration is thus shifted to
dataset generation time, and is realized by setting
parameters in the device driver provided by OpenK-
inect. The result of this step is the original color im-
age and the shifted depth image, with larger invalid
regions on three sides, as shown in Fig. 1.

3.2 Hole filling
When the Kinect cannot calculate the distance to a
location with certainty, it reports a distance of 0 to
signal that it should be treated as invalid. This occurs
in a variety of circumstances, such as due to multiple
reflections, shiny surfaces, occlusion, or interference
from other sources of infrared light. Removing this
noise is a useful preprocessing step as it will provide
a depth map with increased detail.

Previous solutions to this problem involved apply-
ing anisotropic diffusion, an edge-preserving smooth-
ing method, to the depth image in either a color image
guided or unguided method. During initial research, I
was unable to reproduce the results in [2] of applying
this method directly to the depth map. The method
of anisotropic diffusion, presented in Eq. 1 as

It = c(x, y, t)∆I +∇c∇I (1)

is thus highly dependent on the setting of the param-
eters c, the conduction coefficients, λ, the diffusion
rate in the discrete implementation, and the num-
ber of iterations, which were not provided in previous
work.

To solve the hole filling problem in this application,
I applied a median filter

Y [n] = mediann′ X[n− n′] (2)

on each 5×5 neighborhood in the source image. This
procedure was repeated for 10 iterations. The result-
ing image had most small holes filled by this method
with a handful of remaining larger holes, which pro-
duced acceptable results for this application.

3.3 Paired color image registration
The final goal of the stitching process is to warp the
depth maps to lie on the same plane. To achieve this,
we need to first find the relative positioning of each
of the images with respect to one another. We can
define the intrinsic camera projection matrix of the
Kinect color camera using the pinhole camera model
as

K =

fx 0 W/2
0 fy H/2
0 0 1

 =

524 0 320
0 524 240
0 0 1

 (3)

where the field of view in pixels is taken from [5], and
I simplify by assuming zero skew. Given images 1 and
2, we want to project image 1 into the plane of image
2. The projection of image 2 is given by

I2 = K2R2[X,Y, Z]T (4)

where R2 is the 3×3 identity matrix, and K2 = K as
defined before. The projection of image 1 is similarly
given by

I1 = K1R1[X,Y, Z]T (5)

If we further reduce this problem to pairs of im-
ages taken from the same camera under rotation,
the justification for which is presented in the Dataset
Generation section below, then we can observe that
K1 = K2 = K and the only unknown parameters

2



relating I1 and I2 is the unknown matrix R1. We
will estimate R1 by estimating a homography between
points in the associated color images.

As in the original paper, the SIFT algorithm is used
off-the-shelf to extract features from each of the color
images in the form of keypoints and descriptors [3].
The descriptors in both images are then matched us-
ing a nearest-neighbors algorithm. These matches are
then filtered based on a ratio test as described in [1]
Eq. 13, using the provided threshold of 0.7. The
keypoints of the remaining matches in both images
We then use the RANSAC method to estimate a ho-
mography M between the keypoints of the remaining
matches from I1 to I2, with the maximum allowed in-
liner pair error set to 5. This allows us to then solve
for R1 in Eq. 5.

3.4 Spherical image projection
As in the original paper, each of the depth maps for
images 1 and 2 are then projected into the spherical
coordinates given by the equation

f ∗ (sin θ cosφ, sinφ, cos θ cosφ) = (X,Y, Z) (6)

to take account for the fact that the images come from
a rotation in the same scene, where f is the focal
length we used earlier. Image 1 is further warped
according to the R1 we found in the previous step to
bring it into the same plane as image 2.

3.5 Image blending
The final step in building the panorama is combin-
ing the warped depth images together. [2] used the
multi-band blender algorithm for this purpose. How-
ever, testing that algorithm in this project lead to
poor results, in that the two images would appear to
have hard seams near their borders in the resulting
panorama. This issue may have been caused by ei-
ther unknown parameters used in the original study
or a preprocessing difference.

For this project, a simpler technique was instead
chosen where the two images were averaged at their
borders. This was shown to produce an acceptable re-
sult as surfaces known to be smooth in the real world
also had smooth depth values.

4 Experimental Results
4.1 Dataset generation
All data used to test this process was collected using
an Microsoft Kinect V1 in an indoor environment us-
ing the OpenKinect Linux drivers. See Fig. 2. To

Figure 2: Test apparatus

save time and money, only one Kinect V1 sensor was
used for this process. Registered RGB-D images were
collected from a static scene during a period of a few
seconds. The sensor was then rotated around its cen-
ter to offsets of 15 and 30 degrees counterclockwise
from its original position. Natural sources of infrared
light were blocked to prevent interference of the sen-
sor by closing all curtains and blinds.

4.2 Results at 15 degrees
Results of the algorithm were first tested across a ro-
tation of 15 degrees between datasets. This corre-
sponds to an increased depth map field of view of 72◦
assuming a Kinect field of view of 57◦. Original im-
ages are shown in Fig. 3 and the stitched depth map
is shown in Fig. 4. As can be observed from the fig-
ures, the algorithm produced a satisfactory panorama
preserving smoothness of different objects.

4.3 Results at 30 degrees
The algorithm was then tested at an increased separa-
tion of 30◦, corresponding to a total depth map field
of view of 87◦. Original images are shown in Fig. 5
and the stitched depth map is shown in Fig. 6. Sim-
ilarly to the figures for the smaller rotation, a smooth
depth map was produced without any additional sig-
nificant issues. This means that a larger field of view
can be produced from fewer cameras without any sac-
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Figure 3: Registered RGB-D images, 15◦ rotation

Figure 4: Stitched depth map with hole filling, 15◦

Figure 5: Registered RGB-D images, 30◦ rotation

rifice of accuracy. It is noted however that one of the
source depth maps in 5 contains a significant amount
of undetectable depth pixels. This error is attributed
to distance to the far wall in my apartment (>10m)
which falls out of the spec for the Kinect depth sensor.

Figure 6: Stitched depth map with hole filling, 30◦

5 Conclusion
This paper demonstrates that an array of inexpen-
sive sensors can provide comparable detail to that
produced by a single larger sensor such that it pre-
serves all necessary detail from the environment. It
also demonstrates how some simplifications to previ-
ous methods of depth map stitching can produce com-
parable results, which may lead to decreased execu-
tion time. This algorithm has potential applications
to a variety of small indoor spaces, such as robotics
for household purposes or those in relatively confined
spaces such as grocery store robots, enabling a vari-
ety of additional depth-based methods such as local-
ization, mapping, and segmentation.

Further research on this topic might include modi-
fying the preprocessing step to use another type of
edge-preserving filter, such as a bilateral filter. It
could also include trying a different type of feature
extractor, such as convolution layers pretrained on
ImageNet, or a feature extractor known to work well
on depth maps in order to bypass the entire color im-
age processing and registration step.
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